Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display.

نویسندگان

  • G Fuh
  • M T Pisabarro
  • Y Li
  • C Quan
  • L A Lasky
  • S S Sidhu
چکیده

PDZ domains mediate protein-protein interactions at specialized subcellular sites, such as epithelial cell tight junctions and neuronal post-synaptic densities. Because most PDZ domains bind extreme carboxyl-terminal sequences, the phage display method has not been amenable to the study of PDZ domain binding specificities. For the first time, we demonstrate the functional display of a peptide library fused to the carboxyl terminus of the M13 major coat protein. We used this library to analyze carboxyl-terminal peptide recognition by two PDZ domains. For each PDZ domain, the library provided specific ligands with sub-micromolar binding affinities. Synthetic peptides and homology modeling were used to dissect and rationalize the binding interactions. Our results establish carboxyl-terminal phage display as a powerful new method for mapping PDZ domain binding specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origins of PDZ domain ligand specificity. Structure determination and mutagenesis of the Erbin PDZ domain.

The LAP (leucine-rich repeat and PDZ-containing) family of proteins play a role in maintaining epithelial and neuronal cell size, and mutation of these proteins can have oncogenic consequences. The LAP protein Erbin has been implicated previously in a number of cellular activities by virtue of its PDZ domain-dependent association with the C termini of both ERB-B2 and the p120-catenins. The pres...

متن کامل

The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF.

Erbin is a recently described member of the LAP (leucine-rich repeat and PDZ domain) protein family. We used a C-terminally displayed phage peptide library to identify optimal ligands for the Erbin PDZ domain. Phage-selected peptides were type 1 PDZ ligands that bound with high affinity and specificity to the Erbin PDZ domain in vitro. These peptides most closely resembled the C-terminal PDZ do...

متن کامل

Inferring PDZ Domain Multi-Mutant Binding Preferences from Single-Mutant Data

Many important cellular protein interactions are mediated by peptide recognition domains. The ability to predict a domain's binding specificity directly from its primary sequence is essential to understanding the complexity of protein-protein interaction networks. One such recognition domain is the PDZ domain, functioning in scaffold proteins that facilitate formation of signaling networks. Pre...

متن کامل

Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes.

The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interaction...

متن کامل

Alteration of the C-terminal ligand specificity of the erbin PDZ domain by allosteric mutational effects.

Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 28  شماره 

صفحات  -

تاریخ انتشار 2000